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ABSTRACT

       Using a cluster approach to the statistical thermodynamics of ideal gases, it can be

shown that for the reaction

The partition function, q, of the Ar3 molecule can be written as

and the heat capacity is given by

where C(T) is the third virial coefficient for the system. Accurate two body and three

body interaction potentials have been determined for Ar3 and have been used to calculate

C(T). These previous results are used in this paper to calculate Cp
o(Ar3) as a function of

temperature, using the cluster approach to statistical thermodynamics.

       Also, geometric models of the Ar3 molecule are available and these models have

been used in this paper to calculate Cp
o(Ar3) as a function of temperature by the more

common statistical mechanical approach; directly in terms of the partition function. Re-

sults obtained using the two methods are compared.

KEY WORDS:    argon trimer; heat capacity; partition function; third virial coefficient.
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1. INTRODUCTION

       This paper presents theoretical calculations of the heat capacity of Ar3 from 200K to

5000K. Two methods are used; the usual statistical mechanical method involving the

evaluation of partition functions and a cluster approach that leads to expressions for the

thermodynamic properties of Ar3 in terms of the third virial coefficient and its deriva-

tives. Results obtained using the two methods are in reasonable agreement although they

differ in details.

2. THE PARTITION FUNCTION APPROACH

       The usual way in which the thermodynamic properties of gas phase molecules are

calculated is by using the partition function [1]. For 1 mol of an ideal gas, the partition

function, Q, is written as

where No is Avogadro’s number and the q’s signify contributions to the partition func-

tion of a single molecule from the translational, electronic, and internal degrees of

freedom. Also

where qvib is the contribution to the internal partition function from harmonic vibration,

qrot is the contribution to the internal partition function from rigid rotation, and qcor is the

“correction” to the internal partition function due to anharmonic vibration, non-rigid

rotation (e.g. centrifugal stretching) and other effects such as the coupling of vibration

and rotation.
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       The Ar3 molecule will be assumed to be in its ground electronic state. Experimental

spectroscopic constants are not available for this molecule for use in evaluating the par-

tition functions since Ar3 has no dipole moment and no infrared spectrum. The theoretical

model for this molecule in its most stable configuration indicates that it is essentially an

equilateral triangle [2,3,4] with an Ar atom at each apex; there may also be small contri-

butions from other configurations [4].

       The theoretical rotational constant, Be, of Ar3 in the ground vibrational state [2] is

0.0573 cm-1 with slightly different results obtained for the molecule in excited vibrational

states. This molecule has three vibrational modes with [2] frequencies ωe,1 = 22.77 cm-1

for the (0,0,0) → (0,0,1) transition, ωe,2 = 23.04 cm-1 for the (0,0,0) → (0,1,0) transition,

and ωe,3 = 32.92 cm-1 for the (0,0,0) → (1,0,0) vibrational transition. Somewhat different

frequencies are obtained for vibrational excitations to more highly excited states. Thus

there is an anharmonicity effect but it will be ignored for these calculations since the ef-

fect of anharmonicity and other “corrections” on the thermodynamic properties is usually

very small. Thus qcor is taken to be unity for these calculations and, with the zero of

energy taken to be Ar3 in its most stable configuration in the ground electronic state,

       A standard result [1] for the statistical mechanics of  gas phase molecules is
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where HT
o is the standard enthalpy at temperature T and H0

o is the standard enthalpy at

0K. Also

where Cp
o is the standard heat capacity at constant pressure. For Ar3, Be is small and the

rotational degrees of freedom can be considered to be fully excited. Thus the result is

Results are shown in the second column of  Table I. Since the vibrational frequencies are

low, vibration is nearly fully excited, even at low temperatures, and Cp
o approaches its

classical value;  i.e. Cp
o =  7R =  58.20 J/mol/K, at all temperatures considered in these

calculations.

3. THE CLUSTER APPROACH

       An alternative way to approach the statistical mechanical calculation of the thermo-

dynamic properties of ideal gases is to consider the reaction in which a gas atom, X,

forms a cluster of n atoms; i.e.

The relation of this equilibrium reaction to the virial coefficients has been considered in

detail [1,5-15]. The reaction of interest in this paper is
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For this reaction

where Kc
o is the standard equilibrium constant in terms of concentration, C (in mol/liter),

Co = 1 mol/liter,  Nar  and NAr3 are the number of Ar atoms and the number of Ar3 mole-

cules, respectively, in the container and V is the volume of the container. The species are

assumed to be ideal gases. The equation above can be rewritten as

Let [5]

N  =  total number of Ar atoms  =  NAr + 3NAr3

or

NAr  =  N – 3NAr3

For a mixture of the ideal gases Ar and Ar3

where n denotes the number of mols. This can be written as

Upon substituting for NAr3, this becomes
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Upon continuing to substitute for NAr3, the result

is obtained. The virial equation of state is

where B(T), C(T), D(T), etc. are the second, third, fourth, etc. virial coefficients. Upon

comparing the last two equations, the result

is obtained. This is not the same result found in reference [6]. However, Wooley consid-

ers a mixture of the clusters X, X2, X3, X4, etc. In this paper, only the clusters Ar and Ar3

are allowed. If Kc is taken to be the equilibrium constant in terms of the ratios of concen-

trations; i.e. for this reaction

then the last equation can be written as
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       Now, Kc can be written [10] in terms of the partition functions for these species; i.e.

or

The nuclear spin partition functions of the atom and molecule have been ignored since,

assuming the nuclei behave independently, these partition functions cancel [1] in the last

equation. Using the ideal gas law and the explicit result for qtr(Ar), the result

is obtained.

        For 1 mol of Ar3 molecules

where the expression

has been used.  The result for the enthalpy depends on the third virial coefficient, C(T),

its first derivative, and the electronic energy of an Ar atom in the ground state, ε0,el, deter-
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mined relative to the ground state of Ar3. It is common to write these results in terms of

reduced variables; i.e.

where

and σ is the effective rigid sphere diameter of the interacting atoms.  The expression for

the enthalpy can be written as

in reduced variables. Also

where

The heat capacity depends only on the third virial coefficient, and its first and second

derivatives and not on any parameters that are directly related to the model used for Ar3,

such as ε0,el. This is the reason that only results for Cp
o are given in this paper.
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4. THE THIRD VIRIAL COEFFICIENT OF ARGON

       From a statistical mechanical point of view, the third virial coefficient of argon de-

pends on both the two and three body interactions between/among the argon atoms. A

very large number of assessments have been made of the two body Ar-Ar interaction po-

tential. The two body potential suggested by Aziz [17] may be the most accurate Ar-Ar

potential.  Aziz  represented the repulsive wall of the potential by an exponentially de-

creasing function and he represented the long-range attractive part of the potential by the

dispersion terms

where the Cn are the coefficients for the various dispersion terms and R12 represents the

separation of two argon atoms. These terms represent the induced dipole-induced dipole,

etc. interactions. Each dispersion term is modified by a damping function [17,18,19] that

corrects the individual terms in the expansion for charge overlap effects and the entire

long range attractive potential is multiplied by a factor that corrects the entire dispersion

expansion for exchange overlap [17,19]; i.e. the dispersion terms are “doubly corrected”.

       The Aziz potential is highly parameterized and the parameters were determined [17]

by using the potential to fit a wide variety of experimental data, including bulk data such

as second virial coefficients and transport properties. This potential was also used to fit

spectroscopic and molecular data such as the glory structure in the total cross section and

beam data. Perhaps the most impressive achievement of this potential is its ability to re-

produce the vibrational-rotational spectrum of Ar2 [20]. The Aziz potential should repre-

sent the Ar-Ar interaction very accurately.
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       Mas, Lotrich, and Szalewicz [21] used the Aziz potential to calculate the second vir-

ial coefficient of argon in the usual way; i.e.

where V12(R12) is taken to be the Aziz potential. Mas, et.al. [21] fit their results for B(T)

to a simple functional form.

       These authors also calculated the third virial coefficient of argon. The third virial

coefficient can be written as a sum [21];

C(T)  =  C[2,3](T) + C[3,3](T)

where the term C[2,3](T) is the two body contribution to the third virial coefficient ; i.e.

and Vij is taken to be the Aziz potential. The term C[2,2](T) is the three body nonadditive

contribution to the third virial coefficient; i.e.

This term was evaluated by Mas, et. al. [21] using symmetry-adapted perturbation theory

(SAPT) [21,22,23]. The three body potential, V123, was computed by including contribu-

tions from the dispersion, induction, and exchange nonadditivities.

       Again, Mas, et. al. fit their results for C(T) to a simple functional form [21];
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where

C1 = 1104.105 8 C2 = 981.802 40 C3 = 601.123 43

C4 = - 211.057 89 C5 = - 283.562 51 C6 = 7.606 567 8

C7 = - 178.046 07 C8 = 71.694 400

This expression has been used in this paper to calculate C(T) and its derivatives which

are required to obtain results for Cp
o. Results are shown in the third column of Table I.

5. DISCUSSION

       Experimental results for the heat capacity of Ar3 are not available to help determine

which of the calculational procedures is most accurate. However, some sources of error

in each procedure can be partially assessed.

       The accuracy of the partition function method depends on the accuracy of the model

for Ar3 and the assumptions made in the calculational procedure. It is entirely reasonable

to assume that translation and rotation are fully excited. Thus the primary errors in the

triangular Ar3 model are due to errors in the vibrational frequencies and errors due to the

assumption that the correction terms make essentially no contribution to the heat capac-

ity.  The vibrational frequency of Ar2 is [20] 30.68 cm-1; not significantly different from

the three frequencies found [2] for Ar3. This result is reasonable. For He3, three body con-

tributions to the potential can usually be ignored [4,24]. Although this is not the case for

Ar3 [2,4], the three body contributions are much less important than the two body contri-

butions [23]. Thus one would reasonably expect that the Ar3 vibrational frequencies

would be similar to the Ar2 vibrational frequency. Even if the reported Ar3 frequencies
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are in error by a factor of three or four, the frequencies will still be low enough so that

vibration is essentially fully excited at room temperature, the result obtained in this work.

The effect of ignoring the correction terms to the heat capacity should be negligible since

rotation and vibration are essentially fully excited.

       There are also errors in the partition function approach that occur because of the

computational procedure used. Although the corrections to the vibrational-rotational

energy due to anharmonic vibration, non-rigid rotation, and vibration-rotation coupling

have not been included in these calculations, these corrections, even if included, do not

accurately represent the energy levels at high values of the vibrational (v) and rotational

(j) quantum numbers [11-14]. Since the energy levels get closer together as v and j in-

crease, the density of states increases for high v, j so that, even though the Boltzmann

distribution “favors” lower values of v,j, there is a significant contribution to the thermo-

dynamic properties from high v,j states at high temperatures leading to errors [12] in the

partition function approach to the calculation of thermodynamic properties. In addition,

the partition function approach does not usually allow for a sum over the continuum

states that are important at high temperatures. Calculations [25] for O2 suggest that this

can lead to an error in thermodynamic properties of about 10% in high temperatures.

       The errors in the cluster approach to calculating Cp
o depend entirely on the errors in

the calculation of C(T), and its derivatives, which depend on the errors in the two body

potential, Vij, taken to be the Aziz potential [17], and the error in the three body potential,

V123 [23]. It is difficult to assess the accuracy of V123. Lotrich and Szalewicz [21,23] in-

cluded the dispersion nonadditivity through fourth order, the induction nonadditivity, and

the second order exchange nonadditivity. This is a substantial calculation but, since it is a



perturbation calculation, higher order terms are missing and may be important, particu-

larly when, as in these calculations, accurate first and second derivatives of C(T) are re-

quired.

       The error in Vij is more important since the nonadditivity term, C[3,3](T), makes a

rather minor contribution [23] to C(T). Although this two body Ar2 potential has been

tested by Aziz [17] by fitting a great deal of molecular and bulk data, and then “retested”

by reproducing the experimental vibration-rotation spectrum [20] of Ar2, it may not be

satisfactory for calculating thermodynamic properties. The heat capacity of Ar2 depends

[10,14,26,27] on the second virial coefficient for Ar2, B(T), and its first and second der-

ivatives. Calculations of B(T) and its derivatives, using the Aziz  potential, lead [27] to

results for the thermodynamic properties of Ar2 that are incorrect at lower temperatures.

A similar result was obtained for [10] N2 and for [26] O2, using a different two body

potential. These results strongly suggest that an extremely accurate two body potential, as

a function of temperature, is required to obtain sufficient accuracy for the virial coef-

ficients and their derivatives to accurately determine thermodynamic properties at lower

temperatures.

       The results in the third column of Table I strongly suggest that even the carefully

determined results for C(T) may not be accurate enough to rigorously determine the heat

capacity of Ar3. Below 1000K, Cp
o does not continuously increase with T; a similar re-

sult was obtained  in previous calculations [10,26,27]. The most likely reason for this is

the need for even greater accuracy in the determination of C(T) for Ar3.
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Table I. The Heat Capacity, Cp
o, of Ar3 in J/mol/K

                                 Partition            Virial
                                       Function   Coefficient

T(K)  Method   Method

200 53.86   37.10

300 55.23   49.42

400 55.94   49.37

500 56.38   47.41

600 56.68   45.82

700 56.89   44.81

800 57.05   44.20

900 57.18   43.86

          1000 57.28   43.69

          2000 57.74   44.04

          3000 57.89   44.59

          4000 57.97   44.93

          5000 58.02   45.14

________________________________________________________________________


	Using a cluster approach to the statistical thermodynamics of ideal gases, it can be shown that for the reaction
	
	and the heat capacity is given by

	NAr  =  N – 3NAr3

	For a mixture of the ideal gases Ar and Ar3
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